
Implementation Report 
Stakeholders:​ Richard Paige, University of York Communications Office 

Team:​ Barney Morgan, Cameron Smith, Harry Berge, Jake Phillips, Matthew Wilkie, Rob Weddell 
 
Repository Link:​ ​https://github.com/SEPR4/AHOD2  
NB: Submission content on “master” branch. 
 
Approach 
The implementation portion of assessment 3 required the team to overtake an existing project and develop 
the remaining requirements. The development team were able to implement the stated requirements 
whilst remodelling the inherited game to one that we feel would best implement the given requirements.  
 
The architecture of the software was very problematic to work with, with any changes made to the code 
leading to many errors in other areas. It was decided to go down the route of a project overhaul, with 
changes to make the code more object-oriented and less script-like whilst developing the new game which 
is heavily inspired by their old game and documentation. This will allow for easier development as the 
developers won’t be fighting the old code to implement changes any of the necessary changes as well as 
providing a clear structure for unit testing the new code. 
 
The overhaul has led to some more general changes, such as loading all assets (cards, encounters, colleges, 
levels, departments) from JSON files which can now be seen throughout the project to allow for easy 
editing, as well as many other requirement specific changes that can be seen below. 
 
One of the main changes to the existing implementation, as elaborated below, was the generation of the 
node map for the player to move around on. In order to better satisfy their requirements (particularly A4.1, 
B2.2), we made the node map directional meaning that the player can only travel in one direction (up the 
map). The reason for this is two-fold: the difficulty of the game can increase as the player advances, and 
areas are not strangely restricted so the progression seems more natural. 
 
Additionally, we have introduced levels - each level has its own node map. The player is transferred to the 
next node map after defeating the boss of the last. 
 
While all the requirements and milestones have been satisfied, there is a particular test, as seen in the 
document listed below, that is not met. The test (id 43) regards the balancing of the battles and encounters 
in the game meaning that the difficulty has not been properly tested and adjusted accordingly. 
 
The changes as noted below are based on the updated requirements and testing document as seen here; 
https://sepr4.github.io/web/submission/assessment3/updated/Req3.pdf  
https://sepr4.github.io/web/submission/assessment3/testing/Matrix.pdf 
 
Key 
Addition​ - new class, function or file. 
Changed​ - class, function or file remains but its function has been changed. 
Deletion​ - class, function or file has been removed. 
 
 
 
 

https://github.com/SEPR4/AHOD2
https://sepr4.github.io/web/submission/assessment3/updated/Req3.pdf
https://sepr4.github.io/web/submission/assessment3/testing/Matrix.pdf


Changes to previous software  

Changes made  Class names changed (Visual to Screen) 

Components affected  SailVisual​ to SailScreen, ​EncounterVisual​ to EncounterScreen, ​BattleVisual 
to BattleScreen, ​ShipVisual​ to ShipViewScreen. 

Justification  These changes are to make the code more understandable. The 
aforementioned classes extend a class Screen, so changing the naming scheme 
makes the code easier to understand for future developers. 

 

Changes made  ShipViewScreen (ShipVisual) functionality 

Components affected  Changed​: ShipViewScreen class 

Justification  Instead of listing objectives here as in the existing implementation, this screen 
now shows the current level and the player’s deck. The health information is no 
longer needed as it is present on the StatsHUD (elaborated below). 

 
Additional Features 

Components affected  Addition​: AHODScreen class 

Justification  This project has many classes extending LibGDX’s abstract Screen class. Each of 
those classes must implement every abstract method in the Screen class, 
however, this results in duplicate code. This class extends the Screen class and 
implements these methods with default options. The class also provides a 
stage object which all our Screen classes also use, further reducing duplicate 
code. 

 

Components affected  Addition​: FileManager class 

Justification  In order to keep the static assets of the project well organised, we have 
created a class to load them from. This makes loading textures very easy and 
avoids repeated code. 

 

Components affected  Addition​: SailInputProcessor class 

Req Reference  B4.1 

Justification  We have implemented the scrolling up and down the map on the SailScreen 
and decided to add this functionality to a single class for ease. The class is 
responsible for checking the status of key presses and updating the camera 
position accordingly. 

 

Components affected  Addition​: NodeUtil class 

Justification  This class was created to isolate the functions required to generate our node 
map. This means that creating tests for these functions was trivial. The purpose 
of these functions is to generate the node map according to variable criteria 
(such as the depth of the map) and strict criteria (such as max size of each row). 



 

Components affected  Addition​: ShipFactory class 

Req Reference  A2.8, A4.1 

Justification  In order to keep the game interesting and the code modular. We have created 
a ShipFactory class which allows generation of enemy ships. The functions take 
a difficulty parameter which is used to increase the difficulty of the enemies 
generated as the game progresses. The greater the difficulty, the greater the 
size of the enemy ship’s deck and the power of its cards. 

 

Components affected  Addition​: CardManager / EncounterManager / BuildingManager class 

Justification  In keeping with our previous projects and goals, we have made changes so that 
cards are stored in a JSON file and loaded at runtime. This allows for easy 
editing and addition of cards. These classes are responsible for loading the 
data into memory at game launch and also have utility functions relevant to 
each store of data. 

 

Components affected  Addition​: StatsHUD /MessageHUD / AnimationHUD class 

Req Reference  B2.4 

Justification  In order to avoid bad practice by having duplicate code in many classes, we 
have abstracted our on-screen elements as much as possible into the classes 
above. These classes provide tables containing actors which can be drawn to 
any screen. The StatsHUD contains the gold/health/score at the top of the 
screen and the MessageHUD displays status messages set by the player’s 
actions. The AnimationHUD is used by the BattleScreen to display combat 
effects such as damage and heal splats. Each class extending AHODScreen can 
easily enable these interfaces with a single line of code. 

 

Components affected  Addition​: StyleManager class 

Req Reference  B4.2 

Justification  Many classes in our game use repeated and predictable structures to generate 
components related to the look-and-feel of the game. We have added the 
previously mentioned class to make it easy to create styles for components 
such as TextButtons, Labels and Fonts. This also helps to make user interfaces 
more friendly and easy to navigate. 

 

Components affected  Changed​: SailScreen class 
Addition​: GameLevel class and levels.json 

Req Reference  A2.2, A4.2 

Justification  In order to add more direction and interest to the game, we have decided to 
create a series of levels rather than general objectives. This helps to vary the 
difficulty of combat and encounters as the progress of the player increases. 



 

Components affected  Addition​: StartNode class 

Justification  We added a new type of node to better indicate the need to select a node at 
the start of the game (starting location). This makes it easier as these nodes 
have a different texture (so are more easily identifiable). 

 

Components affected  Addition​: TransitionScreen class 

Justification  To improve the look-and-feel of our game we have decided to implement a 
new type of screen which handles transitions from one screen to another. This 
screen fades out the old screen and fades in the new one. 

 

Components affected  Addition​: BattleAI class 

Justification  This class provides functions relating to enemy AI logic during battle. Given the 
battle situation (deck, hand, mana, etc..) the class will determine the next move 
the AI should make (whether to use a card, draw a card or end turn). 

 

Components affected  Addition​: MinigameScreen class 

Req Reference  A2.3, B2.3 

Justification  As part of the milestones for assessment 3, we have added this new screen 
implementation to allow the player to play the minigame. The class handles the 
appearance and functionality of the minigame. 

 

Components affected  Addition​: CardSelectionScreen class 

Req Reference  A1.1 

Justification  To reward players for defeating enemies in combat, they will be able to choose 
a 1 card from a random selection to keep. This screen appears after victory in 
combat. 

 

Components affected  Addition​: EndScreen class 

Req Reference  A2.4 

Justification  We have added a class to switch to when the end of the game has been 
reached. The constructor for this class takes a boolean describing whether the 
player has won the game and will create dialogues accordingly. 

 


