
Team iPatch
Assessment 3: updated requirements

Christian Pardillo Laursen
Filip Makosza
Joseph Leigh

 Mingxuan Weng
Oliver Relph

Upon researching, it was decided that the IEEE Software Requirements Specification (SRS) [1] proved the
most effective method of specifying requirements. This method lays out both functional and non-functional
requirements and includes a set of use cases which explain the user interactions provided by the software.
The rigorous assessment of requirements required by the SRS ensured minimal redesign later in the project
and ensured a realistic basis on which we could estimate schedules, risks and planning [2]. However, it was
concluded that it would not be necessary to strictly follow some aspects of the SRS given that the scope of the
project was relatively small and some aspects of the guidelines are overly extensive. As such, it was decided
that only the Introduction and Functional/Non-Functional sections of the SRS were needed.

The next step was to develop precise requirements through a rapid applied prototyping [3] method. This

method aims to rapidly cycle through the four requirement gathering phases of elicitation, analysis,
specification and validation [4] multiple times in rapid succession. This method enabled the team to quickly
make decisions on conflicting requirements whilst getting ever more precise requirements with every cycle.

The team began by reading the brief and noting down an initial brainstorm of ideas ​(elicitation)​. When a

conflict was met, both ideas would be noted down equally to be decided later by a third party ​(analysis)​. This
ensured that all team members ideas were equally valued and encouraged participation from all team
members. Following this, an initial game proposal was created ​(specification)​. Although riddled with flaws,
vague requirements, and conflicting ideas, the proposal gave the group something to work from and rapidly
make changes to. It also gave the team something tangible to present to the stakeholders and the target
audience in order to gauge their opinion ​(validation)​.

The proposal was then offered to the stakeholder, Richard Paige, in the form of a Q&A for validation ​(2nd

round elicitation) ​[5]. The answers were then analysed, discussed, and built on. From this, a basic agreement
on the product’s key features and requirements were specified and appropriate changes were made to the
initial proposal. This simultaneously solved any prior conflicts and enabled us to gain the insight of our client.
However, it was decided that some requirements given by the stakeholder were still too vague. To deal with
this, a user survey was designed and distributed among the cohort and stakeholders in order to establish a
rough idea of what the target audience would like [6]. Following the user survey, the team was able to spot
trends by analysing the results to the survey and make amends to the remaining few vague user requirements.
This process was repeated one more time, validating with the client to ensure the finalised specification was
acceptable.

Lastly, as mentioned in the SRS, multiple use-cases [7] were designed to emulate specific user interactions

with the proposed system. This ensured focus on one specific usage aspect at a time by removing all previous
assumptions of the requirements. It enabled the team to view the project as if the ‘system was built first and
foremost for its users’ [7, p. 92]. This enabled the team to envision alternative outcomes that would not have
otherwise been considered, and as such, relevant requirements to deal with them. For example, the first use
case [8] highlighted the need for experienced players to skip the tutorial and instantly begin the game (req
2.17).

Eventually, a final set of requirements was established with the information gained from the stakeholder

interviews, client survey, use cases, and rapid applied prototyping. It was ensured that these requirements
were kept as simple and clear as possible, in order to ensure that no requirements are misunderstood later in
development.

Requirements

1. Introduction
1.1 Purpose -

The purpose of this document is to completely and thoroughly specify the requirements of the SEPR 2018 project to
build a pirate game.

1.2 Intended audience -
This project will be used by customers who will be staff or students from the University of York Computer Science

department. We also anticipate that this game will be used by The University of York Communications Office
as part of open day demonstrations.

1.3 Scope -
The game is being developed by a small team of developers with little previous software engineering knowledge. As

such, many ambitious features will most likely be unable to be implemented
1.4 Definitions, acronyms, and abbreviations -

1.4.1 - ​Functional requirement - ​specifies a function that a system or system component must be able to

perform - Typically core features that are imperative to functionality

1.4.2 - ​Non-Functional requirement - ​any other requirement than functional requirements. Categorised

into data requirements (D), constraints (C), performance (P) and quality (Q) requirements.

2. Functional requirements

ID. Description User interaction Risks, Alternatives and Assumptions

2.1 The game must be
set in a flooded
world taken over
by pirates with a
alternative
University of York
Campus as the
main scene.

The player launches the
game and recognises the
Campus. They
understand the pirate
theme and style of the
game from the design
choices made

Assumption: ​A flooded university taken over by pirates
will make a good setting.

Risks: ​Those not familiar with The University York may
not be able to relate to the setting. Also the game may
be limited by the setting..

Alternatives: ​We could still have the game based on
the university but make it more general to all
universities to increase the relatability.

2.2 Ships must be the
only manner of
transport to
transverse the
open world map
using the
keyboard. ​(WASD
-​ ​configurable)

The player is free to move
on the map as they wish.
(other than preventing
them from leaving the
map or accessing locked
areas). The ships will
accelerate with W,
decelerate with S, and
turn left or right with A, D.

Assumptions: ​Assumes that all players have a
keyboard and mouse.

Risk: ​Slight risk that mouse and keyboard are too
confusing.

Alternative: ​Using external controller (gamepad).

2.3 Must be able to
switch between
sailing mode and
combat mode. In
combat mode, the
player must be​ ​able
to attack​ ​enemy
(NPC)​ ​ships.

When approaching an
enemy, the screen will
zoom and weapons will
now be available for use
(battle mode). If all
nearby enemies are killed
or the player leaves their
view, the screen returns
to normal (sailing mode).

Assumption: ​By using two game modes it will help
make the game intuitive for the player.

Risk: ​Implementing two game modes may be time
consuming or difficult.

Alternative: ​We could use separate ‘battle’ maps.

The player should
be able to use
both sailing and
combat modes

2.5 Must be able to
conquer other
colleges (at least

5) and raid
departments (at
least 3).

As part of the storyline,
the player will progress
through all colleges -
working their way up to
defeating the leader of
each college before
recruiting them to their
party

Assumption: ​The game will work better as a
open-world roguelike.

Risks: ​Team member might not be familiar with the
game tipe we decided to create.

Alternatives: ​Instead we could create a linear game.

2.6 The game should
require an element
of skill.

The game should
encourage the
players to learn
the mechanics by
rewarding good
gameplay and
punishing bad
gameplay.

The player will lose all
progress (i.e. start over)
if they die. The game will
have less randomised
mechanics so that skill
can be developed rather
than relying on luck.

Assumption: ​Games require challenges opposed
with skill and tactics to remain interesting.

Risks: ​When a player first plays the game they may
find it difficult and it may be too easy for repetitive
players.

Alternatives: ​We could implement a different for of
challenge such as puzzle based, fetch or luck
based.

2.7 Gameplay should
last between 15

and 60 minutes.

The game can be partially
completed by ignoring
side quests, skipping
dialogue and avoiding
roaming enemies in
around 15 minutes to
complete. Full completion
could take up to 60
minutes.

Assumption: ​A faster game will work well for what
we want to implement.

Risks: ​It will be hard to tell a story in that amount of
time and to cause attachment between the player and
ingame elements.

Alternatives: ​Have a longer running game to boost
these aspects.

2.8 ​There should be
encounters with
non-pirate NPCs

There will be an opportunity
to encounter non-pirate
NPCs at colleges and
departments.

Assumption: ​It would be unrealistic to imagine a
world containing only pirates so we will implement
non-pirate NPCs.

Risks: ​We create a world that feels unrealistic to the
point where it breaks immersion.

Alternatives: ​We create a world with varying
degrees of pirate NPCs.

2.9 A weather system

which affects

movement

Environmental effects
such as wind, water
currents and storms will
affect how the ship
moves.

Stretch requirement: ​This feature will be added if

there is enough time.

2.10 Players should gain
XP from combat,
traversing bad
weather, and
quests.

After defeating a ship in
combat, the player will
receive XP in which they
can level up their ship or
character. Bad weather
will also provide
aminuscule passive XP
gain. Quests will provide

Assumption: ​Having experience as a limiter to
gaining abilities will be a good way controlling
progression through the game.

Risk: ​We don’t want to overwhelm players with a
skill tree.

Alternative: ​Have linear skill trees.

a larger sum of XP.

2.11 Players should
accumulate gold
from combat and
exploration​.

After every battle, the
player will be rewarded
with gold and items.

There will also be
opportunities to earn gold
by completing quests or
exploring areas of the map
containing hidden treasure

Assumption: ​A player who is playing a pirate will
want to collect gold.

Risks: ​We might bog down the player in an economy
system.

Alternatives: ​We don’t have them collect gold to
buy things instead they could get points instead
automatically.

2.12 Each gameplay
should have an
objective (e.g.,
defeat the Chief
Pirate of James
College). The
objective should
not be immediately
achievable (i.e.,
there should be
tasks that need to
be completed first).

Whilst the game is open
world and the player can
do as they please in the
map, certain areas and
equipment will only be
unlockable by
progressing through the
main storyline. As the
story progresses, the
enemies get stronger as
the player (presumably)
gets stronger.

Assumptions: ​Games and stories need a build up
as so we will have a number of quests between the
tutorial and end boss.

Risks: ​We need to find a balance between giving the
player lots of options and not swamping them with
quests.

Alternatives: ​We have a open quest system where
completing enough of them ends that game.

2.13 There should be a
system in place to
spend gold in
order to
upgrade/repair
your ship.

The player can visit
various shops located
around the map offering
ship repair and the ability
to purchase new items
(and possibly sell
obtained items)

Assumptions: ​A store will add a aspect of skill to
the game where players can direct their
progression.

Risks: ​We don’t want to derail the players progression
and make them too powerful. ​Alternatives: ​Have a
linear gold upgrade system.

2.14 There should be a
minigame separate
from the main
game

There will be a minigame
playable at allied
departments where you
can gamble with your
earned gold.

Assumption: ​A minigame adds an extra layer to the
game, keeping the gameplay interesting and
implementing the minigame as a gambling game
keeps it in theme with the rest of the game.

2.15 The game should
include a world
map.

The player can press a
keyboard button to open
up a window displaying
the entire map.

Assumption: ​A world map will help the player navigate
our game.

Risks: ​It may not be necessary for a roguelike game.
Alternatives: ​Not having a world map.

2.16 The player should
be able to gather
items.

Items are received from
quests and exploration
which boost the player’s
stats (such as speed,
damage). These items are
separate from the player’s
skills.

Assumptions: ​Collecting item will be a way for us to
manage progression and tell a story.

Risk: ​We’ll need to implement a lot of different
items.

Alternatives: ​Not having items

2.17 There should be an
integrated tutorial
at the beginning of
the game. This
tutorial should be
able to be skipped

The player will
automatically enter a
tutorial quest when the
game starts which will
explain basic movement,
combat and game
mechanics. This quest
can be skipped for
advanced players.

Assumptions: ​A tutorial will be needed to teach the
players how to play the game.

Risk: ​The tutorial may not cover the whole rules.
Alternatives: ​Have an accessible tutorial through
the menu.

2.18 There should be
real ship based
physics.

The ship cannot be turned
immediately and is
subject to realistic
physics.

Assumptions: ​It will break immersion if we don't
have ship physics.

Risk: ​The game can’t be too realistic, real ships have
large turning arcs and are relatively slow.

Alternatives: ​We can twist the physics affecting the
ship so that is still feels and acts like a ship but is
faster with smaller turning circles.

2.19 There should be a
realistic AI
controlling the
ships

The ships should follow
and shoot at the player
to the standard of a
regular user

Assumptions: ​The programmers can code a
comprehensive AI

Risk: ​the AI is too good and makes the game too
hard, or too bad and makes the game too easy
Alternatives: ​Ships move randomly

3. Non-functional requirements
Categorised into data requirements (D), constraints (C), performance (P) and quality (Q) requirements.

ID. Description User interaction Risks, Alternatives and Assumptions

3.1
(P)

The game must run well on
computers in the Computer
Science department.

The game should run smoothly
at all times (no stuttering or
crashes).

Resolution: ​We should resolve
stuttering by optimizing the game
where required (view culling?).

3.2
(Q)

 The game should be
aesthetically pleasing with all
on-screen elements clear.

The game will have well-made,
high-resolution assets.

Resolution: ​We will consult stakeholder
over interface design. ​Risk:
Stakeholders idea for interface might
not be the most user-friendly.

3.3
(Q)

The code should be written
clearly in order to enable a
smooth transition to new
development teams​ The
code will we written in
accordance with Google’s
Java Code Style Guide [9].

n/a Assumption: ​the team that takes over
our project is capable of following
coding conventions.

Risk: ​Too much time spent on
readability rather than functionality
could result in a lower quality end
product

3.4
(Q)

The game should be fit to be
used as an advertisement by
the university

The game will have a seperate
mode which plays through a
specific part of the game
without any context or

pre-requisite.

Risk: ​The pirate aspect of the game
may be seen to misrepresent the
university.

References
[1] IEEE Specification for Software/System Engineering [Online].

Available: ​https://ieeexplore.ieee.org/document/6146379​ ​[Accessed 29 Oct. 2018]
[2] J. Karlsson and K. Ryan, ‘A Cost–Value Approach for Prioritizing Requirements’, IEEE Software, Vol.
4, Issue 5, p. 67-74, 1997. [Online] Available:
http://www.robertfeldt.net/courses/reqeng/papers/karlsson_1997_cost_value_prioritization_of_requireme
nts.pdf​ ​[Accessed 29 Oct. 2018]
[3] B. Bähr, ‘Prototyping Requirements’. [Online] Available:
https://link.springer.com/chapter/10.1007/978-3-319-53210-3_3​ ​[Accessed 29 Oct. 2018]
[4] D. Kolovos, ‘ Introduction to Requirements Engineering’, The University of York, 2018.
[Online] Available:

https://vle.york.ac.uk/bbcswebdav/pid-2846228-dt-content-rid-7513532_2/courses/Y2018-006404/Require​ ​ments.pdf
[Accessed 29 Oct. 2018]
[5] Element of SEPRise!, Client Interview Record. ​[Online]

Available: ​https://sepr4.github.io/web/submission/assessment1/requirements/ClientInterviewRecord.pdf​ ​[Accessed:
5 Nov. 2018]
[6] Element of SEPRise!, ​User Survey Results. [Online]

Available: ​https://sepr4.github.io/web/submission/assessment1/requirements/UserSurveyResults.pdf​ ​[Accessed:
5 Nov. 2018]
[7] J. Lee and N. Xue, ‘Analyzing user requirements by use cases: a goal-driven approach’, IEEE
Software, Vol. 16, Issue 4, p. 92-101, 1999. [Online]

Available: ​https://pdfs.semanticscholar.org/cfcb/5f116c53732940c9fa210d92eb33d9163c10.pdf​ ​[Accessed 29

Oct. 2018]

[8]Element of SEPRise!, ​Use Cases. [Online]
Available​: ​https://sepr4.github.io/web/submission/assessment1/requirements/UseCases.pdf​ ​[Accessed 6 Nov.

2018]
[9] Google Java Style [Online] Available:​ ​https://google.github.io/styleguide/javaguide.html​ ​[Accessed
5 Dec. 2018]

https://ieeexplore.ieee.org/document/6146379
https://ieeexplore.ieee.org/document/6146379
http://www.robertfeldt.net/courses/reqeng/papers/karlsson_1997_cost_value_prioritization_of_requirements.pdf
http://www.robertfeldt.net/courses/reqeng/papers/karlsson_1997_cost_value_prioritization_of_requirements.pdf
http://www.robertfeldt.net/courses/reqeng/papers/karlsson_1997_cost_value_prioritization_of_requirements.pdf
http://www.robertfeldt.net/courses/reqeng/papers/karlsson_1997_cost_value_prioritization_of_requirements.pdf
https://link.springer.com/chapter/10.1007/978-3-319-53210-3_3
https://link.springer.com/chapter/10.1007/978-3-319-53210-3_3
https://link.springer.com/chapter/10.1007/978-3-319-53210-3_3
https://vle.york.ac.uk/bbcswebdav/pid-2846228-dt-content-rid-7513532_2/courses/Y2018-006404/Requirements.pdf
https://vle.york.ac.uk/bbcswebdav/pid-2846228-dt-content-rid-7513532_2/courses/Y2018-006404/Requirements.pdf
https://sepr4.github.io/web/submission/assessment1/requirements/ClientInterviewRecord.pdf
https://sepr4.github.io/web/submission/assessment1/requirements/UserSurveyResults.pdf
https://pdfs.semanticscholar.org/cfcb/5f116c53732940c9fa210d92eb33d9163c10.pdf
https://pdfs.semanticscholar.org/cfcb/5f116c53732940c9fa210d92eb33d9163c10.pdf
https://sepr4.github.io/web/submission/assessment1/requirements/UseCases.pdf
https://sepr4.github.io/web/submission/assessment1/requirements/UseCases.pdf
https://google.github.io/styleguide/javaguide.html
https://google.github.io/styleguide/javaguide.html

